Abstract

GTPCH-I immunoreactive structures in the rat brain were studied using a polyclonal antibody raised in the chick. General mapping was made using the avidin–biotin–peroxidase technique and compared with the distribution of tyrosine hydroxylase and serotonin immunoreactivities. Double immunofluorescence was performed in order to establish real intracellular colocalization. GTPCH-I immunoreactivity was generally found to be low. Immunostained neurons were present in all the serotonin cell groups. In catecholaminergic neurons, although tyrosine hydroxylase immunoreactivity was always very high, GTPCH-I immunoreactivity was extremely variable, from relatively strong (substantia nigra, ventral tegmental area) to low (locus coeruleus, caudal part of the hypothalamus), extremely low (rostral hypothalamus, ventral brainstem) or almost absent (dorsal brainstem, some hypothalamic nuclei). When feasible, double immunolabeling revealed that all the serotonin cells and most of the tyrosine hydroxylase cells were also expressing GTPCH-I. Our results argue in favor of a regulation of tyrosine hydroxylase activity by the intracellular synthesis of BH4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call