Abstract

Endothelial progenitor cells (EPCs) are both reduced and dysfunctional in hypertension that correlates inversely with its mortality, but the mechanisms are poorly understood. Endothelial nitric oxide synthase (eNOS) critically regulates EPC mobilization and function but is uncoupled in salt-sensitive hypertension because of the reduced cofactor tetrahydrobiopterin (BH4). We tested the hypothesis that GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme of BH4 de novo synthesis, protects EPCs and its function in deoxycorticosterone acetate (DOCA)-salt mice. EPCs were isolated from peripheral blood and bone marrow of wild-type (WT), WT DOCA-salt, endothelial-specific GTPCH transgenic (Tg-GCH), GTPCH transgenic DOCA-salt, and BH4-deficient hph-1 mice. In WT DOCA-salt and hph-1 mice, EPCs were significantly decreased with impaired angiogenesis and adhesion, which were restored in Tg-GCH DOCA-salt mice. Superoxide (O₂⁻) and nitric oxide (NO) levels in EPCs were elevated and reduced, respectively, in WT DOCA-salt and hph-1 mice; both were rescued in Tg-GCH DOCA-salt mice. eNOS(-/-)/GCH(+/-) hybrid mice demonstrated that GTPCH preserved the circulating EPC number, reduced intracellular O₂⁻ in EPCs, and ameliorated EPC dysfunction independent of eNOS in DOCA-salt hypertension. Secreted thrombospondin-1 (TSP-1; a potent angiogenesis inhibitor) from EPCs was elevated in WT DOCA-salt and hph-1 but not DOCA-salt Tg-GCH mice. In vitro treatment with BH4, polyethylene glycol-superoxide dismutase (PEG-SOD), or Nomega-nitro-L-arginine (L-NNA) significantly augmented NO and reduced TSP-1 and O₂⁻ levels from EPCs of WT DOCA-salt mice. These results demonstrated, for the first time, that the GTPCH/BH4 pathway critically regulates EPC number and function in DOCA-salt hypertensive mice, at least in part, via suppressing TSP-1 expression and oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.