Abstract

MotivationGenome assembly aims to reconstruct the whole chromosome-scale genome sequence. Obtaining accurate and complete chromosome-scale genome sequence serve as an indispensable foundation for downstream genomics analyses. Due to the complex repeat regions contained in genome sequence, the assembly results commonly are fragmented. Long reads with high accuracy rate can greatly enhance the integrity of genome assembly results.ResultsHere we introduce GTasm, an assembly method that uses graph transformer network to find optimal assembly results based on assembly graphs. Based on assembly graph, GTasm first extracts features about vertices and edges. Then, GTasm scores the edges by graph transformer model, and adopt a heuristic algorithm to find optimal paths in the assembly graph, each path corresponding to a contig. The graph transformer model is trained using simulated HiFi reads from CHM13, and GTasm is compared with other assembly methods using real HIFI read set. Through experimental result, GTasm can produce well assembly results, and achieve good performance on NA50 and NGA50 evaluation indicators. Applying deep learning models to genome assembly can improve the continuity and accuracy of assembly results. The code is available from https://github.com/chu-xuezhe/GTasm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.