Abstract
AimsSphingolipids are involved in the regulation of insulin signaling, which is linked to the development of insulin resistance, leading to diabetes mellitus. We aimed to study whether modulation of sphingolipid levels by GT-11 may regulate insulin signaling in C2C12 myotubes. Main methodsWe investigated the effects of sphingolipid metabolism on Akt phosphorylation and glucose uptake using C2C12 myotubes. Either GT-11, an inhibitor of dihydroceramide desaturase 1 and S1P lyase, or siRNA targeting Sgpl1, the gene encoding the enzyme, was employed to determine the effect of sphingolipid metabolism modulation on insulin signaling. Western blotting and glucose uptake assays were used to evaluate the effect of treatments on insulin signaling. Sphingolipid metabolites were analyzed by high performance liquid chromatography (HPLC). Key findingsTreatment with GT-11 resulted in decreased Akt phosphorylation and reduced glucose uptake. Silencing the Sgpl1 gene, which encodes S1P lyase, mimicked these findings, suggesting the potential for regulating insulin signaling through S1P lyase modulation. GT-11 modulated sphingolipid metabolism, inducing the accumulation of sphingolipids. Using PF-543 and ARN14974 to inhibit sphingosine kinases and acid ceramidase, respectively, we identified a significant interplay between sphingosine, S1P lyase, and insulin signaling. Treatment with either exogenous sphingosine or palmitic acid inhibited Akt phosphorylation, and reduced S1P lyase activity. SignificanceOur findings highlight the importance of close relationship between sphingolipid metabolism and insulin signaling in C2C12 myotubes, pointing to its potential therapeutic relevance for diabetes mellitus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.