Abstract

Plant acclimation to environmental stress is controlled by a complex network of regulatory genes that compose distinct stress-response regulons. The C2H2-type zinc-finger proteins (ZFPs) have been implicated in different cellular processes involved in plant development and stress responses. Through microarray analysis, an alkaline (NaHCO(3))-responsive ZFP gene GsZFP1 was identified and subsequently cloned from Glyycine soja. GsZFP1 encodes a 35.14kDa protein with one C2H2-type zinc-finger motif. The QALGGH domain, conserved in most plant C2H2-type ZFPs, is absent in the GsZFP1 protein sequence. A subcellular localization study using a GFP fusion protein indicated that GsZFP1 is localized to the nucleus. Real-time RT-PCR analysis showed that GsZFP1 was induced in the leaf by ABA (100μM), salt (200mM NaCl), and cold (4°C), and in the root by ABA (100μM), cold (4°C), and drought (30% PEG 6000). Over-expression of GsZFP1 in transgenic Arabidopsis resulted in a greater tolerance to cold and drought stress, a decreased water loss rate, and an increase in proline irrespective of environmental conditions. The over-expression of GsZFP1 also increased the expression of a number of stress-response marker genes, including CBF1, CBF2, CBF3, NCED3, COR47, and RD29A in response to cold stress and RAB18, NCED3, P5CS, RD22, and RD29A in response to drought stress, especially early during stress treatments. Our studies suggest that GsZFP1 plays a crucial role in the plant response to cold and drought stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call