Abstract
A new support vector machine, SVM, is introduced, called GSVM, which is specially designed for bi-classification problems where balanced accuracy between classes is the objective. Starting from a standard SVM, the GSVM is obtained from a low-cost post-processing strategy by modifying the initial bias. Thus, the bias for GSVM is calculated by moving the original bias in the SVM to improve the geometric mean between the true positive rate and the true negative rate. The proposed solution neither modifies the original optimization problem for SVM training, nor introduces new hyper-parameters. Experimentation carried out on a high number of databases (23) shows GSVM obtaining the desired balanced accuracy between classes. Furthermore, its performance improves well-known cost-sensitive schemes for SVM, without adding complexity or computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.