Abstract

Pesticide exposure may be associated with increased risk of genotoxicity and carcinogenesis. These risks may be affected by polymorphisms of genes for glutathione transferase-dependent metabolism of pesticides and for DNA repair. We studied the prevalence of GSTP1 and XRCC1 polymorphisms and their possible correlation with DNA damage following prolonged pesticide exposure. DNA damage was estimated by the comet assay in peripheral blood samples from 51 pesticide-exposed workers and 50 controls. GSTP1 (105) and XRCC1 (399 and 194) genotypes were identified by restriction fragment length analysis. Individuals carrying theGSTP1 Ile-Ile or XRCC1399 Arg-Arg genotypes showed greater DNA damage than observed for other alleles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.