Abstract

Verifying whether an ω-regular property is satisfied by a finite-state system is a core problem in model checking. Standard techniques build an automaton with the complementary language, compute its product with the system, and then check for emptiness. Generalized symbolic trajectory evaluation (GSTE) has been recently proposed as an alternative approach, extending the computationally efficient symbolic trajectory evaluation (STE) to general ω-regular properties. In this paper, we show that the GSTE algorithms are essentially a partitioned version of standard symbolic model-checking (SMC) algorithms, where the partitioning is driven by the property under verification. We export this technique of property-driven partitioning to SMC and show that it typically does speed up SMC algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.