Abstract

Massive knowledge graphs, such as Linked Open Data or Freebase, contain billions of labeled entities and relationships. Star queries aim to identify an entity given a set of related entities, and they are common with massive knowledge graphs. It is important to find the best way to answer star queries, and we can do this by treating it as a graph pattern-matching problem. Because knowledge graphs are noisy and incomplete in nature, we must find answers that match the star pattern closely, and extract a precise match if possible. Thus, here we propose GStar, a framework to identify the top-k best answers for a star query. GStar effectively and efficiently answers top-k star queries on billion-node graphs through a novel query model, an index-free query algorithm, and a distributed query system. We evaluate GStar through experiments on real-world knowledge graphs. Experimental results show that our query model effectively answers real-life star-pattern queries; our query algorithm can answer top-k queries in a near-real-time manner without requiring expensive graph indices; and the distributed system scales well with both the graph size and number of machines used for computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.