Abstract

In the yeast Saccharomyces cerevisiae, the one-at-a-time deletions of either the high-affinity glucose sensor gene SNF3 or the low-affinity glucose sensor gene RGT2 only slightly reduced pexophagy; however, deleting both genes greatly reduced pexophagy, evincing interaction beyond the sum of the additive effects, as recently shown. The present study identifies the only ScSNF3/RGT2 ortholog in the methylotrophic yeast Pichia pastoris (designated as PpGSS1, from GlucoSe Sensor) and describes its roles in autophagic pathways (non-selective and selective). GSS1 knock-out strain has been constructed. The experiments support the hypothesis that Gss1 plays an important role in autophagic degradation of peroxisomes and glucose catabolite repression in P. pastoris.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call