Abstract

Nitric oxide (NO) production in the tumor microenvironment is a common element in cancer. S-nitrosylation, the post-translational modification of cysteines by NO, is emerging as a key transduction mechanism sustaining tumorigenesis. However, most oncoproteins that are regulated by S-nitrosylation are still unknown. Here we show that S-nitrosoglutathione reductase (GSNOR), the enzyme that deactivates S-nitrosylation, is hypo-expressed in several human malignancies. Using multiple tumor models, we demonstrate that GSNOR deficiency induces S-nitrosylation of focal adhesion kinase 1 (FAK1) at C658. This event enhances FAK1 autophosphorylation and sustains tumorigenicity by providing cancer cells with the ability to survive in suspension (evade anoikis). In line with these results, GSNOR-deficient tumor models are highly susceptible to treatment with FAK1 inhibitors. Altogether, our findings advance our understanding of the oncogenic role of S-nitrosylation, define GSNOR as a tumor suppressor, and point to GSNOR hypo-expression as a therapeutically exploitable vulnerability in cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.