Abstract
Considers kinematic chains evolving on a finite dimensional Lie group G under nonholonomic constraints, where snake-like global motion is induced by shape variations of the system. In particular, the authors consider the case when the evolution of the system is restricted to a subspace h of the corresponding Lie algebra /spl Gscr/, where h is not a subalgebra of /spl Gscr/ and it generates the whole algebra under Lie bracketing. Such systems are referred to as G-Snakes. Away from certain singular configurations of the system, the constraints specify a (partial) connection on a principal fiber bundle, which in turn gives rise to a geometric phase under periodic shape variations. This geometric structure can be exploited in order to solve the nonholonomic motion planning problem for such systems. G-Snakes generalize the concept of nonholonomic variable geometry truss assemblies which are kinematic chains evolving on the special Euclidean group SE(2) under nonholonomic constraints imposed by idler wheels. The authors examine in detail the cases of 3-dimensional groups with real non-abelian Lie algebras such as the Heisenberg group H(3), the special orthogonal group SO(3) and the special linear group SL(2). >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.