Abstract

ObjectiveInflammatory reactions are recognized as pivotal in spinal cord injury (SCI), with the anti-inflammatory role of polarized microglia crucial in mitigating such injury. The present study aimed to determine the protective effects of GsMTx4 on functional recovery in a mouse model of SCI and investigate the role of GsMTx4 in cytokine-induced microglial activation and associated molecular mechanisms. MethodsWe assessed the effects of GsMTx4 on motor function in a mouse model of SCI, including neuronal survival and activated microglia in the vicinity of the injury after SCI. We also investigated the effects of GsMTx4 on expression of relevant inflammatory factors involved in cytokine-induced microglial activation and the associated signaling pathways. ResultsGsMTx4 effectively promoted functional recovery in mice and alleviated nerve damage after SCI. Additionally, GsMTx4 facilitated the transition of microglia from the M1 phenotype to the M2 phenotype, suppressed microglial activation, and reduced the expression of corresponding inflammatory mediators. These effects may involve modulation of neurogenic inflammation through the Piezo1/NFκB/STAT6 pathway, at least in part. ConclusionGsMTx4 safeguards against SCI by regulating microglial polarization, potentially via the Piezo1/NFκB/STAT6 pathway, offering initial evidence supporting the potential therapeutic efficacy of GsMTx4 for treatment of SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.