Abstract

Atrial Fibrillation (AF) is a disease where the atria fail to properly contract but quiver instead, due to the abnormal electrical activity of the atrial tissue. In AF patients, anatomical and functional parameters of the left atrium (LA) largely differ from that of healthy people due to LA remodelling, which can continue in many cases after the catheter ablation treatment. Therefore, it is important to follow up with AF patients to detect any recurrence. LA segmentation masks obtained from short-axis CINE MRI images are used as the gold standard for the quantification of LA parameters. Thick slices of CINE MRI images hinder the use of 3D networks for segmentation while 2D architectures often fail to model inter-slice dependencies. This study presents GSM-Net which approximates 3D networks with effective modelling of inter-slice similarities with two new modules: global slice sequence encoder (GSSE) and sequence dependent channel attention module (SdCAt). In contrast to previous work modelling only local inter-slice similarities, GSSE also models global spatial dependencies across slices. SdCAt generates a distribution of attention weights over MRI slices per channel, to better trace characteristic changes in the size of the LA or other structures across slices. We found that GSM-Net outperforms previous methods on LA segmentation and helps to identify AF recurrence patients. We believe that GSM-Net can be used as an automatic tool to estimate LA parameters such as ejection fraction to identify AF, and to follow up with patients after treatment to detect any recurrence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.