Abstract

Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT) is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β) is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc) in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A) inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis). Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results suggest that cardiac myocyte hypertrophy induced by testosterone involves a cooperative mechanism that links androgen signaling with the recruitment of NFAT through calcineurin activation and GSK-3β inhibition.

Highlights

  • Cardiac hypertrophy is an adaptive mechanism of the heart that enhances cardiac output in response to several physiological and pathological conditions [1]

  • We determined that testosterone activates Nuclear factor of activated Tcells (NFAT) through calcineurin activation and glycogen synthase kinase-3β (GSK-3β) inactivation, thereby inducing cardiac myocyte hypertrophy

  • NFAT/calcineurin signaling has been well established as a regulator of hypertrophic growth, and we here provide new insights regarding the mechanisms implicated in cardiac myocyte hypertrophy induced by testosterone

Read more

Summary

Introduction

Cardiac hypertrophy is an adaptive mechanism of the heart that enhances cardiac output in response to several physiological and pathological conditions [1]. In cardiac myocytes, this phenomenon is characterized by increases in cell size and protein synthesis and the re-expression of various fetal genes [2]. The development of hypertrophy in cardiac myocytes depends on the interaction between several intracellular signaling pathways related to cell growth [1, 3]. Testosterone activates intracellular signaling pathways and triggers their multiple cellular effects [9, 10]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call