Abstract

The mechanism by which the serine-threonine kinase glycogen synthase kinase-3beta (GSK3beta) affects survival of renal epithelial cells after acute stress is unknown. Using in vitro and in vivo models, we tested the hypothesis that GSK3beta promotes Bax-mediated apoptosis, contributing to tubular injury and organ dysfunction after acute renal ischemia. Exposure of renal epithelial cells to metabolic stress activated GSK3beta, Bax, and caspase 3 and induced apoptosis. Expression of a constitutively active GSK3beta mutant activated Bax and decreased cell survival after metabolic stress. In contrast, pharmacologic inhibition (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione [TDZD-8]) or RNA interference-mediated knockdown of GSK3beta promoted cell survival. Furthermore, RNA interference-mediated knockdown of Bax abrogated the cell death induced by constitutively active GSK3beta. In a cell-free assay, TDZD-8 inhibited the phosphorylation of a peptide containing the Bax serine(163) site targeted by stress-activated GSK3beta. In rats, TDZD-8 inhibited ischemia-induced activation of GSK3beta, Bax, and caspase 3; ameliorated tubular and epithelial cell damage; and significantly protected renal function. Taken together, GSK3beta-mediated Bax activation induces apoptosis and tubular damage that contribute to acute ischemic kidney injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.