Abstract

It is widely believed that in most female mammalian neonates, all germ cells enter meiosis to form the primary oocyte at the end of foetal development, and as a result, the postnatal mammalian ovary harbours only a limited supply of oocytes that cannot be regenerated. However, this idea has been challenged by the discovery of the existence of female germline stem cells (FGSCs) in postnatal mammalian ovaries. We have isolated ovarian GSCs from neonatal and adult mouse ovaries and expanded them in the same culture conditions as embryonic stem cells (ESCs). LIF and BIO were beneficial for formation of FGSC colonies. BIO promoted proliferation of FGSCs through activation of β-catenin and up-regulation of E-cadherin. The FGSCs formed compact round colonies with unclear borders, maintained ESC characteristics and alkaline phosphatase (AP) activity, expressing germ-cell markers-Vasa, and stem-cell markers: Oct4, Klf4, C-myc, Nanog, CD49f, Sox2, CD133, SSEA1 and SSEA4. These cells had the ability to form embryoid bodies (EBs), which expressed specific markers for all three germ layers. Then we induced EBs to differentiate into neurons, cardiomyocytes, pancreatic cells and germ cells, which showed the expression of specific markers, β-III-tubulin, cardiac a-actin, Pdx1 and Zps respectively. This study reveals the existence of FGSCs in postnatal mouse ovary with multipotent characteristics. BIO played an important role in regulation of proliferation and maintenance of the FGSCs. This could help provide a better understanding of causes of ovarian infertility, prevention and potential treatment of infertility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call