Abstract

We have previously shown that the endogenous C-terminal fragment of presenilin 1 co-immunoprecipitates with endogenous beta-catenin. Since PS1 has been suggested to be involved in beta-catenin stabilization, we further investigated whether GSK3 beta, responsible for beta-catenin phosphorylation and degradation, is part of the PS1/beta-catenin complex. In naïve H4 and CHO cells, PS1 co-immunoprecipitated with both endogenous beta-catenin and GSK3 beta. In addition, GSK3 beta endogenously binds to the PS1-CTF/NTF complex and beta-catenin in naïve CHO cells. GSK3 beta also co-immunoprecipitated with PS1 full length in CHO cell lines overexpressing PS1 wild type. Given that it has been recently shown that PS1 mutations of aspartate 257 or 385 result in prevention of PS1 endoproteolysis and inhibition of gamma-secretase activity, we also tested whether PS1 endoproteolysis is required for beta-catenin/GSK3 beta/PS1 binding and whether PS1 FAD-linked mutations affect GSK3 beta recruitment in the PS1/beta-catenin complex. GSK3 beta was detected in PS1 immunoprecipitates from H4 cell lines overexpressing PS1 wild type, delta E10, A286E, L246V and in CHO cell lines overexpressing aspartate or M146L mutations. The latter data show that the absence of PS1 endoproteolysis (D257A/D385A and delta E10) or the presence of PS1-FAD mutations does not interfere with beta-catenin/GSK3 beta/PS1 complex formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.