Abstract

Neuronal action potentials are generated through voltage-gated sodium channels, which are tethered by ankyrinG at the membrane of the axon initial segment (AIS). Despite the importance of the AIS in the control of neuronal excitability, the cellular and molecular mechanisms regulating sodium channel expression at the AIS remain elusive. Our results show that GSK3α/β and β-catenin phosphorylated by GSK3 (S33/37/T41) are localized at the AIS and are new components of this essential neuronal domain. Pharmacological inhibition of GSK3 or β-catenin knockdown with shRNAs decreased the levels of phosphorylated-β-catenin, ankyrinG, and voltage-gated sodium channels at the AIS, both "in vitro" and "in vivo", therefore diminishing neuronal excitability as evaluated via sodium current amplitude and action potential number. Thus, our results suggest a mechanism for the modulation of neuronal excitability through the control of sodium channel density by GSK3 and β-catenin at the AIS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.