Abstract

Skin wound healing, particularly diabetic wound healing, is a common clinical challenge. Reducing bacterial infection and promoting angiogenesis are key strategies for diabetic wound healing. In this study, we construct the porphyrin-based Cu-covalent organic frameworks (Cu-COF) through a Schiff base condensation reaction, and then functionalize Cu-COF with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] (mPEG-DSPE), denoted as PEG/Cu-COF, for enhancing diabetic wound healing. PEG/Cu-COF exhibits dual enzymatic properties (glutathione (GSH) oxidase-like and peroxidase (POD)-like nanozymes), facilitating the depletion of GSH and the generation of reactive oxygen species (ROS) through a self-cascading enzymatic reaction, thereby leading to chemodynamic therapy (CDT). Density functional theory (DFT) calculations are employed to investigate the catalytic mechanism and the results reveal that Cu-COF exhibits higher catalytic activity for POD. Moreover, porphyrin-based COF generates singlet oxygen and localize heating under white light and near-infrared irradiation, respectively. Both in vitro and in vivo experiments demonstrate that PEG/Cu-COF exhibits multimodal synergistic sterilization and promotes angiogenesis, collagen deposition, and re-epithelialization during diabetic wound healing. This work highlights the potential utilization of PEG/Cu-COF for self-supplying hydrogen peroxide (H2O2) and amplifying self-cascade reactions to address the limitations of enzymatic treatment, while the synergistic effect of phototherapy improves sterilization and minimizes side effects in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call