Abstract
Molecular Dynamics (MD) simulations were carried out in a microcanonical ensemble to compute the Gruneisen parameter (denoted as γ) of a liquid of bead-spring chains having 10 beads/chain. γ was studied over a wide range of temperatures below and above the glass transition temperature. We found that the Gruneisen parameter varied in the range of 2.1-3.1 and was significantly higher than typically observed experimentally in real polymers. In the glass, a theory was developed for γ using a cell model in which the beads are harmonically bound to their respective cell centers. The resulting Gruneisen parameter is predicted to increase slightly with temperature. Above the glass transition temperature, we employed the generalized Flory dimer equation-of-state and the polymer reference interaction model theory to calculate γ. In these calculations, we found that γ decreased with temperature in the liquid. The theoretical predictions for γ were found to be in good qualitative agreement with our MD simulations, without any adjustable parameters, both above and below Tg. In experiments on real polymers, γ undergoes a sharp discontinuity at the glass transition. By contrast, in our MD simulations, γ varies smoothly over a broad transition region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.