Abstract
The exponential growth in the number of cyber attacks in the recent past has necessitated active research on network intrusion detection, prediction and mitigation systems. While there are numerous solutions available for intrusion detection, the prediction of future network intrusions still remains an open research problem. Existing approaches employ statistical and/or shallow machine learning methods for the task, and therefore suffer from the need for feature selection and engineering. This paper presents a deep learning based approach for prediction of network intrusion alerts. A Gated Recurrent Unit (GRU) based deep learning model is proposed which is shown to be capable of learning dependencies in security alert sequences, and to output likely future alerts given a past history of alerts from an attacking source. The performance of the model is evaluated on intrusion alert sequences obtained from the Warden alert sharing platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.