Abstract

BackgroundThe classification of epileptiform electroencephalogram (EEG) signals has been treated as an important but challenging issue for realizing epileptic seizure detection. In this work, combing gray recurrence plot (GRP) and densely connected convolutional network (DenseNet), we developed a novel classification system named GRP-DNet to identify seizures and epilepsy from single-channel, long-term EEG signals. New methodsThe proposed GRP-DNet classification system includes three main modules: 1) input module takes an input long-term EEG signal and divides it into multiple short segments using a fixed-size non-overlapping sliding window (FNSW); 2) conversion module transforms short segments into GRPs and passes them to the DenseNet; 3) fusion and decision, the predicted label of each GRP is fused using a majority voting strategy to make the final decision. ResultsSix different classification experiments were designed based on a publicly available benchmark database to evaluate the effectiveness of our system. Experimental results showed that the proposed GRP-DNet achieved an excellent classification accuracy of 100 % in each classification experiment, Furthermore, GRP-DNet gave excellent computational efficiency, which indicates its tremendous potential for developing an EEG-based online epilepsy diagnosis system. Comparison with existing methodsOur GRP-DNet system was superior to the existing competitive classification systems using the same database. ConclusionsThe GRP-DNet is a potentially powerful system for identifying and classifying EEG signals recorded from different brain states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call