Abstract

BackgroundThe growth-inhibiting and morphostructural effects of seven constituents identified in Asarum heterotropoides root on 14 intestinal bacteria were compared with those of the fluoroquinolone antibiotic ciprofloxacin.MethodA microtiter plate-based bioassay in sterile 96-well plates was used to evaluate the minimal inhibitory concentrations (MICs) of the test materials against the organisms.Resultsδ-3-Carene (5) exhibited the most potent growth inhibition of Gram-positive bacteria (Clostridium difficile ATCC 9689, Clostridium paraputrificum ATCC 25780, Clostridium perfringens ATCC 13124, and Staphylococcus aureus ATCC 12600) and Gram-negative bacteria (Escherichia coli ATCC 11775 and Bacteroides fragilis ATCC 25285) (minimal inhibitory concentrations (MIC), 0.18–0.70 mg/mL) except for Salmonella enterica serovar Typhimurium ATCC 13311 (MIC, 2.94 mg/mL). The MIC of methyleugenol (2), 1,8-cineole (3), α-asarone (4), (−)-asarinin (6), and pellitorine (7) was between 1.47 and 2.94 mg/mL against all test bacteria (except for compound 2 against C. difficile (0.70 mg/mL); compounds 1 (23.50 mg/mL) and 4 (5.80 mg/mL) against C. paraputricum; compounds 2 (5.80 mg/mL), 4 (12.0 mg/mL), and 7 (0.70 mg/mL) against C. perfringens); compound 1 against E. coli (7.20 mg/mL) and S. enterica serovar Typhimurium (12.0 mg/mL). Overall, all of the constituents were less potent at inhibiting microbial growth than ciprofloxacin (MIC, 0.063–0.25 mg/ mL). The lactic acid-producing bacteria (four bifidobacteria and two lactobacilli) and one acidulating bacterium Clostridium butyricum ATCC 25779 were less sensitive and more susceptible than the five harmful bacteria and two nonpathogenic bacteria (B. fragilis and E. coli) to the constituents and to ciprofloxacin, respectively. Beneficial Gram-positive bacteria and harmful and nonpathogenic Gram-negative bacteria were observed to have different degrees of antimicrobial susceptibility to the constituents, although the antimicrobial susceptibility of the harmful Gram-positive bacteria and the harmful and nonpathogenic Gram-negative bacteria was not observed. Scanning electron microscopy observations showed different degrees of physical damage and morphological alteration to both Gram-positive and Gram-negative bacteria treated with α-asarone, δ-3-carene, pellitorine, or ciprofloxacin, indicating that they do not share a common mode of action.ConclusionA. heterotropoides root-derived materials described merit further study as potential antibacterial products or lead molecules for the prevention or eradication from humans from diseases caused by harmful intestinal bacteria.

Highlights

  • The growth-inhibiting and morphostructural effects of seven constituents identified in Asarum heterotropoides root on 14 intestinal bacteria were compared with those of the fluoroquinolone antibiotic ciprofloxacin

  • Gastrointestinal ecological investigations have indicated that the normal microbiota is predominantly composed of lactic acid-producing bacteria, whereas the microbiota of cancer patients or elderly subjects is mainly composed of Clostridium with only few lactic acid-producing bacteria [2,3,4]

  • Bioassay-guided fractionation and identification Fractions obtained from the solvent hydrolyzable of the methanol extract of A. heterotropoides root were tested against five harmful intestinal bacteria and two nonpathogenic intestinal bacteria by a microtiter plate-based bioassay (Table 2)

Read more

Summary

Introduction

The growth-inhibiting and morphostructural effects of seven constituents identified in Asarum heterotropoides root on 14 intestinal bacteria were compared with those of the fluoroquinolone antibiotic ciprofloxacin. Various microorganisms reside in the gastrointestinal tract as a highly complex ecosystem with considerable species diversity (approximately 500–1,000 bacterial species) [1]. The microbiota participate in normal physiological functions, including metabolic activities that result in salvage of energy and absorbable nutrients, and important trophic effects on intestinal epithelia and on immune structure and function [5,6]. Prolonged treatment with antibiotics alters the normal microbial population of the gastrointestinal tract, eliminating some of the beneficial bacteria [4] and often producing resistance to the drugs by pathogenic microorganisms [8,9], which is a major global public health problem in both developed and developing countries. There is, a critical need for the development of new improved antibacterial agents with novel target sites and low toxicity

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.