Abstract

Epitaxial growth of SiGe quantum cascade (QC) lasers has thus far proved difficult, and nonabrupt Ge profiles are known to exist. We model the resulting barrier degradation by simulating annealing in pairs of quantum wells (QWs). Using a semiclassical charge transport model, we calculate the changes in scattering rates and transition energy between the lowest pair of subbands. We compare results for each of the possible material configurations for SiGe QC lasers. The effects are most severe in n-type (001) Si-rich systems due to the large effective electron mass, and in p-type systems due to the coexistence of light holes and heavy holes. The lower effective mass and conduction band offset of (111) oriented systems minimizes the transition energy variation, and a large interdiffusion length (Ld = 1.49 nm) is tolerated with respect to the scattering rate. Ge-rich systems are shown to give the best tolerance with respect to subband separation (Ld = 3.31 nm), due also to their low effective mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.