Abstract
Twinned crystal growth is studied in primary Al45Cr7 and Al13Fe4 intermetallic compounds (IMCs) to explore how different twin types and twin variants affect the growth morphology during solidification. In both IMCs, the number of twin variants increased as the cooling rate increased and, by ~ 5 K/s, both IMCs formed cyclic twins with combined icosahedral (Al45Cr7) or decagonal (Al13Fe4) pseudosymmetry. The growth morphology depended on which twin variants were present. When all twin domains shared a common direction that was a rod growth direction in single crystals, twinning did not prevent crystals from growing as rods. This was the case for both IMCs at slow cooling rate and Al13Fe4 at all cooling rates. Cyclic twinning of Al13Fe4 generated many re-entrant corners but resulted in only a modest reduction in rod aspect ratio. In contrast, when twin domains in Al45Cr7 had common directions along multiple pseudo-i(2) axes, crystal growth transitioned from rod-like to a near-equiaxed morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.