Abstract
To estimate mixture effects caused by the high number of chemicals simultaneously present in the environment, methods for routine effect assessment of environmentally realistic contaminant mixtures are needed. We repeatedly exposed the marine diatom Phaeodactylum tricornutum to SpeediskTM passive sampler extracts and observed statistically significant growth stimulation up to 6 and 7% for samples from inside and outside the harbor of Zeebrugge, respectively. These effects were found at summed contaminant concentrations (159-166ngL-1 ) that were within a 1.1-to2.4-fold range of those observed in grab water samples taken during sampler deployment. These stimulatory effects were confirmed in 2 independent tests with extracts stored for <1or8mo that had undergone limited sample handling, whereas no effects were observed for extracts that had been stored for 16mo that had undergone repeated handling (notably repeated freezing and thawing) before biotest spiking. Targeted analysis by ultra-high performance liquid chromatography was performed to quantify 88 personal care products (n = 8), pesticides (n = 28), and pharmaceuticals (n = 52). Among these compounds, multivariate statistical analysis put forward the β-blocker atenolol as explaining most of the observed variation in mixture composition between the growth-stimulating and no effect-causing extracts. However, when tested individually over the entire concentration range present in the extracts, atenolol did not have any effect on P.tricornutum, suggesting that nontargeted substances in the extracts may have contributed to the observed stimulatory effects. Nevertheless, the present study shows that exposure to contaminant mixtures at environmentally realistic concentrations can lead to small but significant growth stimulation effects on the marine diatom P. tricornutum. Environ Toxicol Chem 2019;38:1313-1322. © 2019 SETAC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.