Abstract
The development of nano-structured mixed-phase titania thin films and the relationship to photocatalytic activity (PCA) is of interest for pollution reduction and antimicrobial applications. A set of films grown by pulsed pressure metallorganic chemical vapour deposition using titanium tetraisopropoxide precursor was studied. The growth method is single-stage, scalable and produces high-quality, adherent films. Film thicknesses were 101 nm to 4.0 μm. Three growth stages were identified. All films were a mixture of anatase and rutile. Early stage films had rounded morphologies, low surface roughness and low PCA. Transition stage films developed columnar [110] orientated anatase dendrites, contained amorphous carbon and had reduced UV transmittance. Late stage films had strong anatase (220) and rutile (200) textures, contained amorphous carbon and exhibited highly branched anatase dendrites with nanoscale secondary plates. PCA was determined from degradation of stearic acid and correlated with increasing surface roughness. The most active film had formal quantum efficiency of (6.62 ± 0.64) × 10−4 molecules/photon, 59 times higher than a commercially available control. The performance is attributed to the combination of phases yielding polymorphic phase boundaries and amorphous carbon enhancing the adsorption of organic molecules, the unusual (220) anatase texture yielding nanostructured anatase dendrites in combination with nanocrystalline rutile and hierarchical porosity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.