Abstract

Plant growth regulator, kinetin, is known to modulate the key physiological processes under abiotic stresses in different crops. However, kinetin-mediated response at different growth stages of crop plants is lagging behind. Therefore, a field experiment was conducted to appraise the potential role of exogenously applied kinetin in alleviating the effects of water scarcity on wheat. Three levels of kinetin (0, 75, and 150 mg/L) were used either as seed treatment or foliar spray at the vegetative or the post-anthesis stage. Water deficit markedly reduced shoot fresh mass, plant chlorophyll level, flag leaf photosynthesis, stomatal conductance, and transpiration rate. Degradation of chlorophyll a was greater in plants subjected to post-anthesis water-deficit conditions. However, plants growing under continuous water-deficit conditions had significantly lower concentration of chlorophyll b than those treated with water scarcity at the post-anthesis stage or receiving normal irrigation. Inhibited photosynthesis of wheat in response to post-anthesis water-deficit conditions was largely due to non-stomatal factors. In contrast, stomatal factors were the main constraints for photosynthesis in plants growing under continuous scarcity of water. Plants subjected to continuous water starvation had markedly lower grain yield than those subjected to water-deficit conditions at post-anthesis stage. Application of kinetin before seed sowing or at the post-anthesis stage significantly reduced the negative effects of drought on flag leaf chlorophyll and stomatal conductance. Lower level of kinetin (75 mg/L) was found to be more effective in mitigating the inhibitory effects of water shortage on photosynthesis and growth, and improved grain yield under water scarcity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.