Abstract

A growth spin model is proposed for the modelling of the expansive growth and fibre remodelling of cell wall. The introduction of the growth spin allows to relax the perfectly bonding assumption in the kinematical growth, which provides a more sophisticated and flexible kinematical description for modelling the selective control and flexible regulation of anisotropic growth. Extended hardening laws are proposed for the growth and remodelling, respectively, aiming at further clarification of the dynamic balance between hardening and softening in a growing cell wall. The proposed model may shed a new light into the micro-structural interpretation of the “fictitious” intermediate (growth) configuration in the kinematical growth modelling of soft matter. A case study of the cell wall as a growing cylindrical wall is presented to demonstrate the proposed model. Spencer’s deviatoric stress tensor and its rate format are shown to play a key role in the modelling of the cell wall as a fibre-reinforced soft tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.