Abstract

Salinity tolerance in some plant species has been related to characteristics of potassium (K) and sodium (Na) uptake and transport. Tomato (Lycopersicon esculentum Mill., cv. Rossel) plants were grown in nutrient solution to determine effects of two K levels [0.2 (low) and 2 mmol (high)] combined with 0, 100, and 200 mmol NaCl on growth, and on Na and K uptake and translocation. Net uptake rates of Na and K were determined by disappearance in the growth medium and by plant accumulation. At the low level of K in solution, salinity decreased shoot and root dry weight and leaf area. Addition of 2 mmol K ameliorated of the added NaCl effects and improved growth parameters. Salinity reduced net K uptake rates and to a lesser extent K translocation from root to shoot, which resulted in higher K shoot concentration and a lower K root concentration. The inhibitory effect of salinity on K translocation was greater with low K level in nutrient solution. Net uptake of K was dependent on K level in the growth medium. Addition of K resulted in decreases of shoot Na uptake. The translocation of Na from roots to shoots was reduced by K level in nutrient solution. These results indicate that K supply and K accumulation and regulation in plant tissue contribute to salt tolerance and growth enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call