Abstract
ABSTRACT Although the effect of salinity on plant growth has been the focus of a substantive research effort, much of this research has failed adequately to separate the various growth-limiting aspects of salinity; thus, the results are confounded by multiple factors. Eight perennial grass species were grown in a sand-culture system dominated by sodium chloride (NaCl) [electrical conductivities (ECs) between 1.4 and 38 dS m−1], with sufficient calcium (Ca) added to each treatment to ensure that Na-induced Ca deficiency did not reduce growth. Of the eight perennial grass species examined, Chloris gayana cv. ‘Pioneer’ (Rhodes grass) was the most salt-tolerant species, while Chrysopogon zizanioides cv. ‘Monto’ (vetiver) was of only moderate tolerance. However, observed salinity tolerances tended to be lower than those expected from published values based on the threshold-salinity (bent-stick) model. This discrepancy may be due in part to differences in the evapotranspirational demand between studies; i.e., an increase in demand accelerates the accumulation of sodium (Na) in the shoots and hence decreases apparent salinity tolerance. It was also observed that the use of a non-saline growth period (to allow seed germination and establishment) results in the overestimation of vegetative salinity tolerance if not taken into consideration. This situation is particularly true for species of low salt tolerance, due to their comparatively rapid growth in the non-saline medium compared with growth at full salinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.