Abstract

Examinations of the macromolecular components of the protein synthesizing system (RNA, DNA and protein) have been made in the marine cyanobacterium, Synechococcus sp. WH 7803. Slowly growing, irradiance limited cells have less RNA and lower rates of RNA synthesis than do those growing at rapid rates. RNA content and synthesis increase in conjunction with division rate. Protein content is variable. Protein synthesis increases up to a plateau at division rates less the maximum observed. The results imply that there is extra protein synthetic capacity produced at high, irradiance limited growth rates. Synechococcus sp. WH 7803 responds to an increase in irradiance through a rapid shiftup in macromolecular synthesis. RNA, protein and DNA increase in a sequential fashion which precedes the onset of cell division. After decreases in irradiance, protein synthesis is maintained despite reductions in RNA. This suggests that there is some degree of physiological buffering which occurs in this species. These studies indicate that, as in more extensively studied procaryotic models, the protein synthesizing system plays a central role in the global mechanisms regulating growth in Synechococcus sp. WH 7803.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call