Abstract

Tall fescue (Festuca arundinacea Schreb.) leaf blades elongated 33% faster at continuous low than at continuous high irradiance (60 versus 300 micromoles per second per square meter photosynthetic photon flux density) when temperature of the leaf elongation zone was held constant at 21 degrees C. Increased rate of elongation was associated with a near proportional increase in length of the elongation zone (+38%). In contrast, growth in width and thickness was decreased at low irradiance, resulting in only a 12% increase in leaf area production and 5% less total growth-associated water deposition than at high irradiance. At low irradiance dry matter (DM) import into the elongation zone was 28% less, and 55% less DM was used per unit leaf area produced. DM use in synthesis of structural components (i.e. DM less water-soluble carbohydrates) was only 13% less at low irradiance, whereas water-soluble carbohydrates (WSC) deposition was 43% less. The lower rate of WSC deposition at low irradiance was associated with a higher net rate of monosaccharide deposition (+39%), whereas net deposition rates for sucrose (-27%) and fructan (-56%) were less than at high irradiance. Still, at low irradiance, net fructan accumulation accounted for 64% of WSC deposition, i.e. 25% of DM import, demonstrating the high sink strength of the leaf elongation zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call