Abstract

Viral infections are a major factor in diatom cell death. However, the effects of viruses on diatom dynamics remain unclear. Based on laboratory studies, it is hypothesized that virus-induced diatom mortality is dependent on the diatom growth rate. The present study aimed to elucidate the relationship between the diatom growth rate and virus-induced mortality using model systems of the marine planktonic diatom, Chaetoceros tenuissimus and its infectious viruses. We also examined the fate of diatom populations in a semi-continuous dilution culture system, in which host growth rates were controlled at 0.69, 2.08, and 3.47 day–1. Diatom populations gradually decreased following the viral inoculation of each culture system, and virus-induced mortality inversely correlated with the diatom growth rate. Furthermore, the viral burst size was slightly higher in lower growth rate cultures. These results suggested that the host physiological status related to the growth rate affected viral infection and proliferation. Diatom populations were not completely lysed or washed out in any of the dilution systems; they showed steady growth in the presence of infectious viruses. This may be partially explained by defective interference particles from viruses and cell debris. The present results indicate that diatoms in dilution environments maintain their populations, even under viral pressure. Moreover, diatom populations with a low growth rate may partially sustain higher growth populations through nutrient recycling following virus-induced cell death. The results of the present study provide insights into diatom dynamics in natural environments in the presence of infectious viruses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call