Abstract

Escherichia coli and Salmonella enterica serovar Typhimurium share high degrees of DNA and amino acid identity for 65% of the homologous genes shared by the two genomes. Yet, there are different phenotypes for null mutants in several genes that contribute to DNA condensation and nucleoid formation. The mutant R436-S form of the GyrB protein has a temperature-sensitive phenotype in Salmonella, showing disruption of supercoiling near the terminus and replicon failure at 42 degrees C. But this mutation in E. coli is lethal at the permissive temperature. A unifying hypothesis for why the same mutation in highly conserved homologous genes of different species leads to different physiologies focuses on homeotic supercoil control. During rapid growth in mid-log phase, E. coli generates 15% more negative supercoils in pBR322 DNA than Salmonella. Differences in compaction and torsional strain on chromosomal DNA explain a complex set of single-gene phenotypes and provide insight into how supercoiling may modulate epigenetic effects on chromosome structure and function and on prophage behavior in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.