Abstract

Bacterial biofilms pose a significant health risk when they grow on devices placed or implanted in the human body. There is a need to develop new materials that can be used as surface coatings on such devices to inhibit biofilm growth. We report on measurements of the biofilm growth rate on a new polymeric material, slippery BMA-EDMA, which can be used as a surface coating for medical devices. Growth rate measurements are also reported for polycarbonate and glass surfaces, for comparison. Measurements are made in a medium shear stress fluid environment. The physical properties of the surfaces are characterized using contact angle, surface roughness, surface skewness and surface kurtosis. Growth rate on the slippery BMA-EDMA is found to be the smallest of the three surfaces. Growth rate is weakly correlated with surface hydrophobicity and surface roughness, while it is strongly correlated with surface skewness and kurtosis.

Highlights

  • Biofilms are structured, matrix-enclosed microbial communities that adhere to a surface or interface and are understood to be the most prevalent form taken by bacteria in natural, industrial and medical aquatic environments [1]

  • Valquier-Flynn et al Pseudomonas aeruginosa is a common environmental bacterial species of class Bacillus, which acts as an opportunistic pathogen in immune compromised individuals and is involved in a broad spectrum of bacterial infections including infection of tissue in severe burn victims, acute lung infection in cystic-fibrosis patients, and ulcerative keratitis occurring in contact lens users [4]

  • To explore the question of why there might be a difference in growth rates between the three surfaces we looked at the contact angle of water on each surface, as a measure of hydrophobicity, and at a measures of surface morphology, i.e. average surface roughness, skewness and kurtosis, performed with the Keyence VK-X100 microscope and VK Analyzer software

Read more

Summary

Introduction

Matrix-enclosed microbial communities that adhere to a surface or interface and are understood to be the most prevalent form taken by bacteria in natural, industrial and medical aquatic environments [1]. Many bacterial infections in humans involve biofilms growing on tissue, as in necrotizing fasciitis or on implanted devices including catheters, artificial heart valves and orthopedic devices [2]. Such biofilm infections are typically not resolved by host immune response or antimicrobial therapy and must be mechanically eliminated by surgery or device removal [3]. Developing methods of either preventing or disrupting biofilm growth on tissue or devices in the human body is of great current interest. As a well-studied organism, P. aeruginosa can serve as a model for developing our understanding of anti-biofilm techniques

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call