Abstract
Lithium-ion batteries with single ion-conductor ceramic electrolytes short-circuit when subjected to charging currents above a critical current density. Here, we analyse the rate at which a lithium (Li) filament (sometimes referred to as a dendrite) will grow from the cathode towards the anode during charging of such batteries. The filament is modelled as a climbing edge dislocation with its growth occurring by Li+ flux from the electrolyte into the filament tip at constant chemical potential. The growth rate is set by a balance between the reduction of free-energy at the filament tip and energy dissipation associated with the resistance to the flux of Li+ through the filament tip. For charging currents above the critical current density, the filament growth rate increases with decreasing filament tip resistance. Imperfections, such as voids in the Li cathode along the electrolyte/cathode interface, decrease the critical current density but filament growth rates are also lower in these cases as filament growth rates scale with the charging currents. The predictions of the model are in excellent quantitative agreement with measurements and confirm that above the critical current density a filament can traverse the electrolyte in minutes or less. This suggests that initiation of filament growth is the critical step to prevent short-circuiting of the battery.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.