Abstract

SiC is a candidate material for micro- and nano-electromechanical systems (MEMS and NEMS). In order to understand the impact that the growth rate has on the residual stress of CVD-grown 3C-SiC hetero-epitaxial films on Si substrates, growth experiments were performed and the resulting stress was evaluated. Film growth was performed using a two-step growth process with propane and silane as the C and Si precursors in hydrogen carrier gas. The film thickness was held constant at ~2.5 µm independent of the growth rate so as to allow for direct films comparison as a function of the growth rate. Supported by profilometry, Raman and XRD analysis, this study shows that the growth rate is a fundamental parameter for low-defect and low-stress hetero-epitaxial growth process of 3C-SiC on Si substrates. XRD (rocking curve analysis) and Raman spectroscopy show that the crystal quality of the films increases with decreasing growth rate. From curvature measurements, the average residual stress within the layer using the modified Stoney’s equation was calculated. The results show that the films are under compressive stress and the calculated residual stress also increases with growth rate, from -0.78 GPa to -1.11 GPa for 3C-SiC films grown at 2.45 and 4 µm/h, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.