Abstract

BackgroundMicroalgae are a promising biomass feedstock for biofuels production. The use of wastewater effluent as a nutrient medium would improve the economics of microalgal biofuels production. Bacterial communities in aquatic environments may either stimulate or inhibit microalgal growth. Microalgal productivity could be enhanced if the positive effects of indigenous bacteria could be exploited. However, much is unknown about the effects of indigenous bacteria on microalgal growth and the characteristics of bacterial communities associated with microalgae in microalgae–effluent culture. To assess the effects of the indigenous bacteria in wastewater effluent on microalgal growth, three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris, and Euglena gracilis, were cultured in two municipal wastewater effluents and one swine wastewater effluent with and without indigenous bacteria for 7 days.ResultsAll microalgae grew better in all effluents with indigenous bacteria than without bacteria. Biomass production of C. reinhardtii, C. vulgaris, and E. gracilis increased > 1.5, 1.8–2.8, and > 2.1-fold, respectively, compared to the axenic cultures of each microalga. The in situ indigenous bacterial communities in the effluents therefore promoted the growth of the three microalgae during 7-day cultures. Furthermore, the total numbers of bacterial 16S rRNA genes in the 7-day microalgae–effluent cultures were 109‒793 times the initial numbers. These results suggest that the three microalgae produced and supplied organic carbon that supported bacterial growth in the effluent. At the phylum and class levels, Proteobacteria (Alphaproteobacteria and Betaproteobacteria) and Bacteroidetes (Sphingobacteriia and Saprospirae) were selectively enriched in all microalgae–effluent cultures. The enriched core bacterial families and genera were functions of the microalgal species and effluents. These results suggest that certain members of the bacterial community promote the growth of their “host” microalgal species.ConclusionTo enhance their own growth, microalgae may be able to selectively stimulate specific bacterial groups from among the in situ indigenous bacterial community found in wastewater effluent (i.e., microalgae growth-promoting bacteria: MGPB). The MGPB from effluent cultures could be used as “probiotics” to enhance microalgal growth in effluent culture. Wastewater effluent may therefore be a valuable resource, not only of nutrients, but also of MGPB to enable more efficient microalgal biomass production.

Highlights

  • Microalgae are a promising biomass feedstock for biofuels production

  • Growth and biomass production of C. reinhardtii, C. vulgaris, and E. gracilis in wastewater effluent with and without indigenous bacteria To examine the effects of indigenous bacteria in wastewater effluents on the growth of the microalgae C. reinhardtii, C. vulgaris, and E. gracilis, each microalgal species was grown separately in the three effluents with or without indigenous bacteria for 7 days

  • The biomass production of C. reinhardtii, C. vulgaris, and E. gracilis during the 7-day culture experiment increased > 1.5, 1.8–2.8, and > 2.1-fold, respectively, compared to the axenic cultures of each microalga (Table 2). These results strongly indicate that indigenous bacterial communities in the effluents promoted the growth of the three microalgae or provided the microalgal partners with an essential compound

Read more

Summary

Introduction

Microalgae are a promising biomass feedstock for biofuels production. The use of wastewater effluent as a nutrient medium would improve the economics of microalgal biofuels production. Microalgal productivity could be enhanced if the positive effects of indigenous bacteria could be exploited. Much is unknown about the effects of indigenous bacteria on microalgal growth and the characteristics of bacterial communities associated with microalgae in microalgae–effluent culture. Microalgae have attracted extensive global attention as a promising biomass feedstock for biofuels production because of their high growth rates and high capability to accumulate lipids. The use of wastewater effluent as a nutrient medium would improve the economics and sustainability of microalgal biofuels production [1,2,3]. To develop more efficient microalgal biofuel production, it is necessary to enhance microalgal biomass yields in microalgae–wastewater effluent cultivation facilities

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call