Abstract

Despite a range of methods used to promote modern agriculture with several outcomes, food quality and availability problems remain. This work aims to evaluate the effect of AM fungi inoculation on the growth, yield, nutritional, and antinutritional properties of 7 varieties of cassava. Growth characteristics, yields, rentability, nutritional, and antinutritional of tubers of each treatment were determined at harvest. All the cassava varieties used form a symbiosis with AM fungi at various frequencies, with the I090590 variety being the best (61.66 %). The best amount of chlorophyll, carotenoid, and height of plants were recorded at 9 months old. The 96/1414, TME/693 and MD varieties respectively show the best amount of chlorophyll, size, and carotenoids at 9 months old. Following AM fungi inoculation, an increase in the content of chlorophyll, size, and carotenoids was recorded for all the varieties with the best rate attributed respectively to 92/0326, MD, and 92/0326. Tuber yields vary significantly depending on the cassava varieties, with the best (56.16 t/ha) recorded for the I090590 variety. Following inoculation with AM fungi, a significant increase in yields was recorded, with the best ratio (2.7) obtained with the AE variety. The I090590 variety shows the best yield and by then the most profitable. Inoculation with AM fungi leads to a significant increase in the sugar, protein, fibre, and phosphorus content of all cassava varieties, with the best ratios obtained in 96/1414, 01/1797, and I090590 varieties respectively. Similarly, the inoculation of cassava varieties with AM fungi leads to a significant reduction in the content of cyanides, oxalates, and phytates. The best ratio of reduction for cyanide was 1.91 for the MD variety. AM fungi inoculation is an important way to ensure safe, exponential production and high economic profitability of foodstuffs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.