Abstract

BackgroundH-NS family proteins are nucleoid-associated proteins that form oligomers on DNA and function as global regulators. They are found in both bacterial chromosomes and plasmids, and were suggested to be candidate effectors of the interaction between them. TurA and TurB are the predominantly expressed H-NS family proteins encoded on the chromosome of Pseudomonas putida KT2440, while Pmr is encoded on the carbazole-degradative incompatibility group P-7 plasmid pCAR1. Previous transcriptome analyses suggested that they function cooperatively, but play different roles in the global transcriptional network. In addition to differences in protein interaction and DNA-binding functions, cell expression levels are important in clarifying the detailed underlying mechanisms. Here, we determined the precise protein amounts of TurA, TurB, and Pmr in KT2440 in the presence and absence of pCAR1.ResultsThe intracellular amounts of TurA and TurB in KT2440 and KT2440(pCAR1) were determined by quantitative western blot analysis using specific antibodies. The amount of TurA decreased from the log phase (~80,000 monomers per cell) to the stationary phase (~20,000 monomers per cell), while TurB was only detectable upon entry into the stationary phase (maximum 6000 monomers per cell). Protein amounts were not affected by pCAR1 carriage. KT2440(pCAR1pmrHis), where histidine-tagged Pmr is expressed under its original promotor, was used to determine the intracellular amount of Pmr, which was constant (~30,000 monomers per cell) during cell growth. Quantitative reverse transcription PCR demonstrated that the transcriptional levels of turA and turB were consistent with protein expression, though the transcriptional and translational profiles of Pmr differed.ConclusionThe amount of TurB increases as TurA decreases, and the amount of Pmr does not affect the amounts of TurA and TurB. This is consistent with our previous observation that TurA and TurB play complementary roles, whereas Pmr works relatively independently. This study provides insight into the molecular mechanisms underlying reconstitution of the transcriptional network in KT2440 by pCAR1 carriage.

Highlights

  • H-NS family proteins are nucleoid-associated proteins that form oligomers on DNA and function as global regulators

  • Our previous report revealed that several bacteria carry the same types of H-NS family proteins on both their plasmids and chromosome [7]

  • We used the KT2440(pCAR1pmrHis) [13] strain, where His-tagged Pmr is expressed under its original promotor, with specific anti-His antibody to quantify the intracellular amount of Pmr

Read more

Summary

Introduction

H-NS family proteins are nucleoid-associated proteins that form oligomers on DNA and function as global regulators. They are found in both bacterial chromosomes and plasmids, and were suggested to be candidate effectors of the interaction between them. TurA and TurB are the predominantly expressed H-NS family proteins encoded on the chromosome of Pseudomonas putida KT2440, while Pmr is encoded on the carbazoledegradative incompatibility group P-7 plasmid pCAR1. Among the best characterized NAPs are the histone-like protein H1 (H-NS) family proteins They have two structurally independent domains connected by a flexible linker, an N-terminal domain involved in dimerization/ oligomerization, and a C-terminal domain in charge of DNA-binding [4]. An MvaT homolog, Pmr, is encoded on the carbazole-degradative incompatibility (Inc) P-7 group plasmid pCAR1, whose hosts are mainly Pseudomonas [8,9,10,11,12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call