Abstract

ABSTRACT 1. A total of 864 d old (male) Ross × Ross 708 broiler chicks were allocated to 48 floor pens (12 pens/treatment and 18 birds/pen) to investigate dose-response of a blend of seaweeds (SB) on growth performance, breast yield, jejunal histomorphology, microbial metabolites and community and plasma biochemical profile. 2. A maize-soybean meal diet was formulated with 0, 5, 10 or 20 g/kg of SB. Diets were formulated for a three-phase feeding programme (starter: d 0–10, grower: d 11–24, and finisher: d 25–42) and met or exceeded Aviagen nutrient specifications. Diets were allocated to pens (n = 12) balanced for body weight (BW). Birds had free access to feed and water, BW and feed intake (FI) were monitored by phase. One bird per pen was randomly selected on d 42, bled for plasma, and samples for intestinal tissue and caecal digesta were taken. Microbial DNA was extracted and submitted for microbial community profile using the Illumina Miseq® platform. 3. In the starter phase, SB linearly (P ≤ 0.01) improved BW, body weight gain (BWG), and FCR. However, the improvement was quadratic, such that there was no further improvement beyond 5 g/kg SB inclusion. Growth performance response to SB in the grower phase was similar to the starter phase, with the exception of FCR (P > 0.05). Overall, from d 0–42, a linear and quadratic (P < 0.01) response was observed for final BW (d 42), whereby birds fed 5, 10 and 20 g/kg SB were heavier than control by 166, 183 and 180 g, respectively. A quadratic (P = 0.03) effect was observed for breast yield in response to SB. There was a quadratic reduction (P < 0.05) in gamma-glutamyl transferase (GGT) and a linear increase in glutamate dehydrogenase (GDH) in response to SB. Supplemental SB linearly reduced (P ≤ 0.04) the relative abundance of phylum Bacteroidetes and Proteobacteria, and increased the abundance of phylum Firmicutes (linearly; P = 0.02) and Actinobacteria (quadratically; P = 0.03). 4. The data indicated that the optimal inclusion for SB was between 5 and 10 g/kg for improved growth performance and breast yield. However, increased abundance of Firmicutes and actinobacteria in the caecal digesta suggested that the higher doses enhanced prebiotic effects of seaweed components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.