Abstract

This paper studies growth, percolation, and correlations in disordered fiber networks. We start by introducing a 2D continuum deposition model with effective fiber-fiber interactions represented by a parameter $p$ which controls the degree of clustering. For $p=1$, the deposited network is uniformly random, while for $p=0$ only a single connected cluster can grow. For $p=0$, we first derive the growth law for the average size of the cluster as well as a formula for its mass density profile. For $p>0$, we carry out extensive simulations on fibers, and also needles and disks to study the dependence of the percolation threshold on $p$. We also derive a mean-field theory for the threshold near $p=0$ and $p=1$ and find good qualitative agreement with the simulations. The fiber networks produced by the model display nontrivial density correlations for $p<1$. We study these by deriving an approximate expression for the pair distribution function of the model that reduces to the exactly known case of a uniformly random network. We also show that the two-point mass density correlation function of the model has a nontrivial form, and discuss our results in view of recent experimental data on mass density correlations in paper sheets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.