Abstract

AbstractThe process of thermal decomposition of SiOx layers prepared by magnetron sputtering is studied by photoluminescence, AFM, Auger and SIMS methods. The dependence of the depth distribution of the chemical composition on excess silicon content is obtained. It is shown that as‐sputtered SiOx layers are characterized by homogeneous enough chemical composition and do not exhibit photoluminescence. High‐temperature annealing in nitrogen atmosphere stimulates not only Si nanoparticle formation but also the appearance of a Si depleted region near layer‐substrate interface. This last process is found to be dependent on excess Si content. The decrease of silicon content in the depth of the annealed layers is accompanied by the decrease of Si particle sizes as proved by the blue shift of the photoluminescence maximum. The mechanisms of SiOx decomposition and possible reasons for the appearance of the Si depleted region are discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.