Abstract

Growth pattern and electronic and magnetic properties of Agn Cr (n = 1-16) clusters have been investigated via density functional theory (DFT) combined with CALYPSO structure search method. The optimized geometry shows that the growth of the global minimum structures of Agn Cr clusters have obvious rule. when n > 12, silver atoms grow around an icosahedron which is almost unchanged in each structure. Analyses of electronic properties indicate that the doped Cr atom can only enhance the stability of larger silver clusters. Optical absorption and photoelectron spectra of Agn Cr isomers have been predicted and can be used for their structural identification. The icosahedral Ag12 Cr cluster with large energy level gap can be seen as a superatom. The adsorption capacity of Cr atom in Agn Cr cluster to CO is much higher than that of free Cr atom. The intensity of IR and Ramam spectra can be dramatically enhanced when CO is absorbed on Agn Cr cluster that Cr atom is encapsulated by Ag atoms. Moreover, the red shift of IR and Raman spectra of CO adsorbed on these clusters is also very small compared to free CO. Magnetism calculations show that the magnetic moment of Agn Cr clusters decreases linearly from n = 6 to 12 and increases linearly from n = 12 to 16. The total magnetic moment of Agn Cr cluster is mainly localized on the Cr atom. The change of magnetic moment of Cr atom is related to the charge transfer between Cr and Ag atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call