Abstract

ZnO single crystal thin films were grown by plasma enhanced molecular beam epitaxy on (0 0 0 1) sapphire. The growth modes of ZnO epilayers were investigated by reflection high-energy electron diffraction. A transition from two-dimensional nucleation to three-dimensional nucleation is found at the initial growth stage. Optical properties of the films, studied by photoluminescence spectroscopy, exhibit a dominant bound exciton emission at 3.361 eV at 4 K, and a deep level emission centered at 2.42 eV which is associated with either impurities or native defects. The deep level emission which is successfully suppressed to 1 500 of intensity of the excitonic emission. Fabrication of these high-quality ZnO epilayers had lead to observation of stimulated emission at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.