Abstract

SUMMARYThe growth rates of 3 species of phytoplankton were found to be dependent on the vitamin B12 concentrations in the media. In batch cultures, the vitamin B12 half‐saturation constants and standard errors were 0.39 ± 0.042 μμg/ml for Thalassiosira pseudonana (clone 3H), 1.69 ± 0.24 μμg/ml for Isochrysis galbana, and 2.77 ± 1.65 μμg/ml for Monochrysis lutheri. A chemostat was used to grow T. pseudonana with vitamin B12 as the controlling factor. In the chemostat the yield and standard deviation, 102 ± 21 × 104 cells/μμg vitamin B12, was the same as in the batch culture, 126 ± 13 ± 104 cells/μμg. The chemostat half‐saturation constant, 0.26 ± 0.068 μμg/ml vitamin B12, and maximum growth rate were in agreement with those obtained in batch cultures. Vitamin concentrations for maximum growth, rates were greater than those calculated necessary from yield data to give observed population densities similar to those in natural waters. In the sea the effect of vitamin B12 concentration on growth rates may be complicated by low concentrations of other nutrients or the presence of inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call