Abstract

Capability of patterning carbon nanotubes (CNTs) growth is of tantamount importance for a number of applications ranging from thermal to electronic. This article reports on the columnar growth of vertically aligned multiwall carbon nanotubes (VA-MWCNTs) on patterned Silicon (Si) surface. We have developed procedures based on negative as well as positive masking approaches which allows the growth of predetermined MWCNTs patterns. We describe in detail the process steps leading to Si surface patterning. As quoted above, patterns are exploited to grow VA-MWCNTs. We have focused in particular on the growth of CNT pillars by chemical vapor despoition (CVD) technique at 850°C with camphor and ferrocene as carbon precursors and catalyst respectively. Field emission scanning electron microscopy (FESEM) is employed at low magnification to verify the correct patterning, and at high magnification to examine the surface morphology of CNTs pillars. The pillars are up to 2 mm high, their height being tailored through the deposition time. The diameter of each MWCNT is in the range 30–70 nm and the length is up to few hundred micrometers. The small CNT pillars produced, have several electrical and thermal applications. For instance they can be very useful for heat transfer systems as the lower thermal conductivity of fluids can be improved by the inclusion of nanotubes thanks to their peculiar 1-dimensional heat transfer characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call