Abstract

With rapidly increasing demand for high energy density, silicon (Si) is greatly expected to play an important role as the anode material of lithium-ion batteries (LIBs) due to its high specific capacity. However, large volume expansion for silicon during the charging process is still a serious problem influencing its cycling stability. Here, a Si/C composite of vertical graphene sheets/silicon/carbon/graphite (VGSs@Si/C/G) is reported to address the electrochemical stability issues of Si/graphite anodes, which is prepared by adhering Si nanoparticles on graphite particles with chitosan and then in situ growing VGSs by thermal chemical vapor deposition. As a promising anode material, due to the buffering effect of VGSs and tight bonding between Si and graphite particles, the composite delivers a high reversible capacity of 782.2mAhg-1 after 1000 cycles with an initial coulombic efficiency of 87.2%. Furthermore, the VGSs@Si/C/G shows a diffusion coefficient of two orders higher than that without growing the VGSs. The full battery using VGSs@Si/C/G anode and LiNi0.8Co0.1Mn0.1O2 cathode achieves a high gravimetric energy density of 343.6Whkg-1, a high capacity retention of 91.5% after 500 cycles and an excellent average CE of 99.9%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call